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A high-efficiency post-processing method for computing the magnetic flux in coils is discussed and applied to magnetodynamic 

problem analysis. The method firstly separates the contribution of magnetic flux in a coil into three parts, respectively generated by 

source coils, magnetic regions and conductive regions. It can reduce the mesh size used around the coil, thus increasing the 

computational efficiency. It is well adapted to any numerical technique, such as the finite element and volume integral methods. A 

strong magnetic–electric coupling problem solved with volume integral method was used to validate the performance of the post-

processing computational method. 

 
Index Terms—Coils, magnetic flux, magnetodynamic, volume integral method (VIM). 

 

I. INTRODUCTION 

AGNETIC flux in coils is an important quantity in the 

analysis, design and optimization of electromagnetic 

devices. The magnetic flux in a coil is generally calculated in 

the post-processing step of computational electromagnetic 

problems, where the field distribution is firstly obtained by 

given numerical methods, such as the finite element method 

(FEM) or the volume integral method (VIM). 

With integral formulation method, it is unnecessary to 

discretize the air region, such kind of approach is therefore 

more efficient for the study of electromagnetic device with 

predominant air regions. Thanks to the development of matrix 

compression algorithms, solving the electromagnetic problems 

by integral equations is becoming more and more popular and 

efficient, from magnetostatic applications [1]-[2] to 

magnetodynamic applications [3]-[4] in the presence of both 

magnetic and conductive volume regions, and also including a 

coupling with external circuits. 

After solving the problem and getting all the field quantities 

on the mesh, it is necessary to put forward a high efficient 

computational method for evaluating magnetic flux in coils. 

This paper proposes a new general approach dividing the 

magnetic flux in a coil into the summation of three terms: one 

generated by source coils, one by magnetic region and one by 

conductive region. The computation of these three terms are 

discussed in the following part. 

II. MAGNETIC FLUX COMPUTATION 

By magnetic vector potential 𝐀 formulation, the magnetic 

flux through a coil 𝑘, with a region denoted by Ωc𝑘 , can be 

expressed by the integral 
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where the 𝐣0𝑘  is a vector function describing the normalized 

current density of the considered coil region Ω0𝑘 . For a 

magnetodynamic problem containing: 1) source coil regions 

Ω0, 2) non-conducting magnetic regions Ωm and 3) electrical 

conductive regions Ωc, as illustrated in Fig. 1, the magnetic 

vector potential 𝐀 can be separated in three components, i.e 

𝐀 = 𝐀0 + 𝐀m + 𝐀c , where 𝐀0 , 𝐀m  and 𝐀c  are generated 

respectively by the three aforementioned regions. The 

contribution of total magnetic flux Φ through a coil 𝑘 can be 

therefore expressed by 
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where Φ0𝑘
 is the contribution of all source coils in vacuum, 

Φm𝑘
 is the contribution of the magnetization in magnetic 

regions and Φc𝑘
 is the contribution of eddy currents in electri-

cal conductive regions. 

In a magnetodynamic problem with multiple coils, the com-

ponent of magnetic vector potential 𝐀0 on the coil 𝑘, which is 

generated by all the coils in vacuum, can be analytically com-

puted by 
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where the sum of l means all coils in the problem. Thus, the 

first part of flux Φ0𝑘
 in (2), which is generated by all coils is 

the problem, can be calculated by 
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where the second integral on a coil region Ω0𝑙 can be calculat-

ed by a semi-analytical method [5]. 

Furthermore, in the case of integral formulations, the other 

two components of the magnetic vector potential, 𝐀m and 𝐀c, 

can be obtained by integrating receptively on the magnetic 

region Ωm and conductive region Ωc: 
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Fig. 1. Illustration of a magnetodynamic problem with coils, magnetic re-

gions and conductive region. 
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Therefore, the other two flux components in (2) are calcu-

lated by the double integral, as: 
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In (6), the two double integrals are related to the considered 

coil region Ω0𝑘, it should be thus sufficiently meshed to have a 

precise result. A great number of elements will increase 

dramatically the computation time, it is relatively inefficient to 

solve directly the double integral, especially dealing with the 

complex geometries. 

A method which allows obtaining Φm𝑘
 by integrating 

directly in the magnetic region has been presented in [6]. It 

proposes a method to calculate the flux generated by the 

magnetization in magnetic region can be calculated by 
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where 𝐌 means the magnetization field in magnetic regions 

Ωm and 𝐡0𝑘 represents the magnetic field generated by the coil 

𝑘 with 1 A. The computational method in (7) has shown a 

good efficacy in the study of inductive power transmission 

system for the mutual-inductance calculation. However, the 

method can only deal with the magnetostatic problems and has 

not been extended yet to conductive region in the 

magnetodynamic context. 

Similarly, in order to increase the computational efficiency 

by solving directly the double integral in (6) for the flux 

component Φc𝑘
, we tend to propose in this paper a new 

method which leads directly to a single integration in the 

conductive region Ωc𝑘, as: 
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where 𝐚0𝑘 represents the normalized magnetic vector potential 

generated by the coil 𝑘  with 1 A, and 𝐉c  means the eddy 

current density, which can be easily calculated by 𝐀 

formulation that combines equivalent network based on 

Whitney facet interpolation and Green’s function volume 

integral method proposed in [4].  

The computation of the magnetic flux generate by eddy 

current is finally changed into a single integral which is 

related only to the domain of electrical conductive region Ωc. 

III. MAGNETODYNAMIC APPLICATION EXAMPLE 

The proposed post-processing method is tested by a strong 

magnetic–electric coupling problem, as illustrated in Fig. 2. 

The 3-D axisymmetric problem is composed of: a solenoid 

coil (radius 6 mm, thickness 0.1 mm, height 10 mm) and a 

linear magnetic core (average radius 4 mm, thickness 2 mm, 

height 10 mm, relative permeability = 100) inside. A thin 

surface copper region (radius 5.5 mm, thickness 0.1 mm, 

height 10 mm, conductivity 55 × 106 S/m) is placed between 

the solenoid coil and the magnetic core to realize an 

electromagnetic shielding by eddy currents. 

Figure 3 shows the variation of the flux in the coil versus 

the frequency, with an axisymmetric finite element analysis to 

the same problem in the software Flux as reference. First 

result is provided at 0 Hz without any eddy currents and the 

module of magnetic flux in the coil has reached the maximum 

value. When the frequency increases, eddy currents begin to 

act as a shield and the flux decreases. Moreover, the 

comparison to the results with a finite element method shows 

a difference less than 0.4% at any frequency. 
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Fig. 2. A test example of strong magnetic–electric coupling problem. (a) 

Geometry and (b) eddy currents density on the conductive region. 

 
Fig. 3. Comparison of the magnetic flux in the coil obtained by FEM (ref) 

and VIM. 


